Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Aging Cell ; 22(11): e13984, 2023 11.
Article in English | MEDLINE | ID: mdl-37712598

ABSTRACT

Aging people living with HIV (PWH) frequently manifest impaired antibody (Ab) responses to seasonal flu vaccination which has been attributed to ongoing inflammation and immune activation. We have recently reported a similar scenario in old simian immunodeficiency virus (SIV) infected rhesus macaques (RM) with controlled viremia and have been able to compensate for this deficiency by immunotherapy with interleukin (IL)-21-IgFc. To understand the underlying mechanisms of IL-21-induced immunomodulation leading to enhanced flu vaccine response in aging and SIV, we have investigated draining lymph node (LN) cells of IL-21-treated and -untreated animals at postvaccination. We observed IL-21-induced proliferation of flu-specific LN memory CD4 T cells, expansion of B cells expressing IL-21 receptor (IL-21R), and modest expansion of T follicular helper cells (Tfh) co-expressing T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and DNAX accessory molecule (DNAM-1). Transcriptional analysis of LN cells of IL-21-treated animals revealed significant inhibition of germinal center (GC) Tfh and B-cell interferon signaling pathways along with enhanced B-cell development and antigen presentation pathways. We conclude that IL-21 treatment at the time of flu vaccination in aging SIV-infected animals modulates the inductive LN GC activity, to reverse SIV-associated LN Tfh and B-cell dysfunction. IL-21 is a potential candidate molecule for immunotherapy to enhance flu vaccine responses in aging PWH who have deficient antibody responses.


Subject(s)
Influenza Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Humans , Animals , T-Lymphocytes, Helper-Inducer , Macaca mulatta , Lymph Nodes , Interleukins/genetics , Simian Immunodeficiency Virus/physiology , Vaccination
2.
Front Immunol ; 14: 1213375, 2023.
Article in English | MEDLINE | ID: mdl-37622123

ABSTRACT

Therapeutic monoclonal antibodies (mAb) targeting the immune checkpoint inhibitor programmed cell death protein 1 (PD-1) have achieved considerable clinical success in anti-cancer therapy through relieving T cell exhaustion. Blockade of PD-1 interaction with its ligands PD-L1 and PD-L2 is an important determinant in promoting the functional recovery of exhausted T cells. Here, we show that anti-PD-1 mAbs act through an alternative mechanism leading to the downregulation of PD-1 surface expression on memory CD4+ and CD8+ T cells. PD-1 receptor downregulation is a distinct process from receptor endocytosis and occurs in a CD14+ monocyte dependent manner with the CD64/Fcγ receptor I acting as the primary factor for this T cell extrinsic process. Importantly, downregulation of surface PD-1 strongly enhances antigen-specific functional recovery of exhausted PD-1+CD8+ T cells. Our study demonstrates a novel mechanism for reducing cell surface levels of PD-1 and limiting the inhibitory targeting by PD-L1/2 and thereby enhancing the efficacy of anti-PD-1 Ab in restoring T cell functionality.


Subject(s)
CD8-Positive T-Lymphocytes , Receptors, IgG , B7-H1 Antigen , Cell Membrane , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
3.
iScience ; 26(8): 107261, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37520703

ABSTRACT

Secondary human lymphoid tissue immune reactions take place in a highly coordinated environment with compartmentalization representing a fundamental feature of this organization. In situ profiling methodologies are indispensable for the understanding of this compartmentalization. Here, we propose a complementary experimental approach aiming to reveal different aspects of this process. The analysis of human tonsils, using a combination of single cell phenotypic analysis based on flow cytometry and multiplex imaging and mass spectrometry-based methodologies, revealed a compartmentalized organization at the cellular and molecular levels. More specifically, the skewed distribution of highly specialized immune cell subsets and relevant soluble mediators was accompanied by a compartmentalized localization of several lipids across different anatomical areas of the tonsillar tissue. The performance of such combinatorial experimental approaches could lead to the identification of novel in situ interactions and molecular targets for the in vivo manipulation of lymphoid organ, particularly the germinal center, immune reactions.

5.
Nat Commun ; 14(1): 3719, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349337

ABSTRACT

Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4+ and CD8+ T cells. Co-culturing CD4+ with autologous CD8+ T cells from ART-suppressed HIV+ donors with N6/αCD3-αCD28, results in activation of latently-infected cells and their elimination by activated CD8+ T cells. This trispecific antibody mediates CD4+ and CD8+ T-cell activation in non-human primates and is well tolerated in vivo. This HIV-directed antibody therefore merits further development as a potential intervention for the eradication of latent HIV infection.


Subject(s)
HIV Infections , HIV-1 , Animals , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Virus Latency , HIV Antibodies
6.
Eur J Immunol ; 52(7): 1171-1189, 2022 07.
Article in English | MEDLINE | ID: mdl-35562849

ABSTRACT

Common variable immunodeficiency (CVID) is the most frequent primary antibody deficiency whereby follicular helper T (Tfh) cells fail to establish productive responses with B cells in germinal centers. Here, we analyzed the frequency, phenotype, transcriptome, and function of circulating Tfh (cTfh) cells in CVID patients displaying autoimmunity as an additional phenotype. A group of patients showed a high frequency of cTfh1 cells and a prominent expression of PD-1 and ICOS as well as a cTfh mRNA signature consistent with highly activated, but exhausted, senescent, and apoptotic cells. Plasmatic CXCL13 levels were elevated in this group and positively correlated with cTfh1 cell frequency and PD-1 levels. Monoallelic variants in RTEL1, a telomere length- and DNA repair-related gene, were identified in four patients belonging to this group. Their blood lymphocytes showed shortened telomeres, while their cTfh were more prone to apoptosis. These data point toward a novel pathogenetic mechanism in CVID, whereby alterations in DNA repair and telomere elongation might predispose to antibody deficiency. A Th1, highly activated but exhausted and apoptotic cTfh phenotype was associated with this form of CVID.


Subject(s)
Common Variable Immunodeficiency , Apoptosis/genetics , Common Variable Immunodeficiency/genetics , Humans , Programmed Cell Death 1 Receptor/genetics , T Follicular Helper Cells , T-Lymphocytes, Helper-Inducer
7.
Expert Rev Vaccines ; 21(5): 633-644, 2022 05.
Article in English | MEDLINE | ID: mdl-35193447

ABSTRACT

INTRODUCTION: During the last century, changes in hygiene, sanitation, and the advent of childhood vaccination have resulted in profound reductions in mortality from infectious diseases. Despite this success, infectious diseases remain an enigmatic public health threat, where effective vaccines for influenza, human immunodeficiency virus (HIV), tuberculosis, and malaria, among others remain elusive. AREA COVERED: In addition to the immune evasion tactics employed by complex pathogens, our understanding of immunopathogenesis and the development of effective vaccines is also complexified by the inherent variability of human immune responses. Lymph nodes (LNs) are the anatomical sites where B cell responses develop. An important, but understudied component of immune response complexity is variation in LN immune dynamics and in particular variation in germinal center follicular helper T cells (Tfh) and B cells which can be impacted by genetic variation, aging, the microbiome and chronic infection. EXPERT OPINION: We describe the contribution of genetic variation, aging, microbiome and chronic infection on LN immune dynamics and associated Tfh responses and offers perspective on how inclusion of LN immune subset and cytoarchitecture analyses, along with peripheral blood biomarkers can supplement systems vaccinology or immunology approaches for the development of vaccines or other interventions to prevent infectious diseases.


Subject(s)
Germinal Center , Influenza Vaccines , B-Lymphocytes , Humans , Immunity , Lymph Nodes/pathology , T-Lymphocytes, Helper-Inducer
8.
Cell Rep ; 38(1): 110199, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34986348

ABSTRACT

Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , HIV Antibodies/therapeutic use , Immune Evasion/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Immunodeficiency Virus/immunology , Animals , Antiviral Agents/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , HIV Antibodies/immunology , HIV-1/immunology , Humans , Immunotherapy/methods , Macaca mulatta , THP-1 Cells , Viremia/prevention & control , Viremia/therapy
9.
Diabetes ; 70(12): 2892-2902, 2021 12.
Article in English | MEDLINE | ID: mdl-34620616

ABSTRACT

In the attempt to understand the origin of autoantibody (AAb) production in patients with and at risk for type 1 diabetes (T1D), multiple studies have analyzed and reported alterations in T follicular helper (Tfh) cells in presymptomatic AAb+ subjects and patients with T1D. Yet, whether the regulatory counterpart of Tfh cells, represented by T follicular regulatory (Tfr) cells, is similarly altered is still unclear. To address this question, we performed analyses in peripheral blood, spleen, and pancreatic lymph nodes (PLN) of organ donor subjects with T1D. Blood analyses were also performed in living AAb- and AAb+ subjects. While negligible differences in the frequency and phenotype of blood Tfr cells were observed among T1D, AAb-, and AAb+ adult subjects, the frequency of Tfr cells was significantly reduced in spleen and PLN of T1D as compared with nondiabetic control subjects. Furthermore, adoptive transfer of Tfr cells delayed disease development in a mouse model of T1D, a finding that could indicate that Tfr cells play an important role in peripheral tolerance and regulation of autoreactive Tfh cells. Together, our findings provide evidence of Tfr cell alterations within disease-relevant tissues in patients with T1D, suggesting a role for Tfr cells in defective humoral tolerance and disease pathogenesis.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Lymph Nodes/pathology , Spleen/pathology , T-Lymphocytes, Regulatory/pathology , Adult , Animals , Case-Control Studies , Cells, Cultured , Diabetes Mellitus, Type 1/pathology , Humans , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Pancreas
10.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34623326

ABSTRACT

Primary HIV-1 infection can be classified into six Fiebig stages based on virological and serological laboratory testing, whereas simian-HIV (SHIV) infection in nonhuman primates (NHPs) is defined in time post-infection, making it difficult to extrapolate NHP experiments to the clinics. We identified and extensively characterized the Fiebig-equivalent stages in NHPs challenged intrarectally or intravenously with SHIVAD8-EO. During the first month post-challenge, intrarectally challenged monkeys were up to 1 week delayed in progression through stages. However, regardless of the challenge route, stages I-II predominated before, and stages V-VI predominated after, peak viremia. Decrease in lymph node (LN) CD4+ T cell frequency and rise in CD8+ T cells occurred at stage V. LN virus-specific CD8+ T cell responses, dominated by degranulation and TNF, were first detected at stage V and increased at stage VI. A similar late elevation in follicular CXCR5+ CD8+ T cells occurred, consistent with higher plasma CXCL13 levels at these stages. LN SHIVAD8-EO RNA+ cells were present at stage II, but appeared to decline at stage VI when virions accumulated in follicles. Fiebig-equivalent staging of SHIVAD8-EO infection revealed concordance of immunological events between intrarectal and intravenous infection despite different infection progressions, and can inform comparisons of NHP studies with clinical data.


Subject(s)
Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Administration, Intravenous , Administration, Rectal , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Disease Progression , Female , HIV Infections/immunology , HIV Infections/virology , HIV-1 , Humans , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/classification , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Time Factors , Translational Research, Biomedical , Viral Load , Viremia/immunology , Viremia/virology
11.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34491910

ABSTRACT

Natural aging and HIV infection are associated with chronic low-grade systemic inflammation, immune senescence, and impaired antibody responses to vaccines such as the influenza (flu) vaccine. We investigated the role of IL-21, a CD4+ T follicular helper cell (Tfh) regulator, on flu vaccine antibody response in nonhuman primates (NHPs) in the context of age and controlled SIV mac239 infection. Three doses of the flu vaccine with or without IL-21-IgFc were administered at 3-month intervals in aged SIV+ NHPs following virus suppression with antiretroviral therapy. IL-21-treated animals demonstrated higher day 14-postboost antibody responses, which associated with expanded CD4+ T central memory cells and peripheral Tfh-expressing (pTfh-expressing) T cell immunoreceptor with Ig and ITIM domains (TIGIT), expanded activated memory B cells, and contracted CD11b+ monocytes. Draining lymph node (LN) tissue from IL-21-treated animals revealed direct association between LN follicle Tfh density and frequency of circulating TIGIT+ pTfh cells. We conclude that IL-21 enhances flu vaccine-induced antibody responses in SIV+ aged rhesus macaques (RMs), acting as an adjuvant modulating LN germinal center activity. A strategy to supplement IL-21 in aging could be a valuable addition in the toolbox for improving vaccine responses in an aging HIV+ population.


Subject(s)
Immunotherapy/methods , Influenza Vaccines/therapeutic use , Interleukins/therapeutic use , Simian Acquired Immunodeficiency Syndrome/drug therapy , Animals , Influenza Vaccines/pharmacology , Interleukins/pharmacology , Macaca mulatta
12.
Eur J Immunol ; 51(10): 2485-2500, 2021 10.
Article in English | MEDLINE | ID: mdl-34369597

ABSTRACT

The dynamics of T-cell receptor (TCR)selection in chronic HIV-1 infection, and its association with clinical outcome, is well documented for an array of MHC-peptide complexes and disease stages. However, the factors that may contribute to the selection and expansion of CD8+ T-cells in chronic HIV-2 infection, especially at the clonal level remain unclear. To address this question, we undertook a detailed molecular characterization of the clonotypic architecture of an HLA-B*3501 restricted Gag-specific CD8+ T-cell response in donors chronically infected with HIV-2 using a combination of flow cytometry, tetramer-specific CD8+ TCR clonotyping, and in vitro assays. We show that the response to the NY9 epitope is hierarchical and narrow in terms of T-cell receptor-alpha (TCRA) and -beta (TCRB) gene usage yet clonotypically diverse. Furthermore, clonotypic dominance in shared origin CTL clones was associated with a greater magnitude of cytokine production and antigen sensitivity at limiting antigen dilution as well as enhanced cross-reactivity for known HIV-2 variants. Hence, our data suggest that effector mobilization and expansion in human chronic HIV-2 infection may be linked to the qualitative features of specific CD8+ T-cell clonotypes, which could have implications for viral control and disease outcome.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-2/physiology , T-Cell Antigen Receptor Specificity , gag Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Motifs , CD8-Positive T-Lymphocytes/metabolism , Chronic Disease , Conserved Sequence , Epitopes, T-Lymphocyte/immunology , HIV Infections/metabolism , Host-Pathogen Interactions/immunology , Humans , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism
13.
Diagnostics (Basel) ; 11(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34441292

ABSTRACT

We report postmortem cardio-pulmonary findings including detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in formalin-fixed paraffin embedded tissue in 12 patients with COVID-19. The 5 women and 7 men (median age: 73 years; range 35-96) died 6-38 days after onset of symptoms (median: 14.5 days). Eight patients received mechanical ventilation. Ten patients showed diffuse alveolar damage (DAD), 7 as exudative and 3 as proliferative/organizing DAD. One case presented as acute fibrinous and organizing pneumonia. Seven patients (58%) had acute bronchopneumonia, 1/7 without associated DAD and 1/7 with aspergillosis and necrotic bronchitis. Microthrombi were present in 5 patients, only in exudative DAD. Reverse transcriptase quantitative PCR detected high virus amounts in 6 patients (50%) with exudative DAD and symptom-duration ≤14 days, supported by immunohistochemistry and in-situ RNA hybridization (RNAscope). The 6 patients with low viral copy levels were symptomatic for ≥15 days, comprising all cases with organizing DAD, the patient without DAD and one exudative DAD. We show the high prevalence of DAD as a reaction pattern in COVID-19, the high number of overlying acute bronchopneumonia, and high-level pulmonary virus detection limited to patients who died ≤2 weeks after onset of symptoms, correlating with exudative phase of DAD.

14.
Front Immunol ; 12: 683396, 2021.
Article in English | MEDLINE | ID: mdl-34177929

ABSTRACT

CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination.


Subject(s)
Disease Reservoirs/virology , HIV Infections/virology , Image Processing, Computer-Assisted , Lymphoid Tissue/cytology , Lymphoid Tissue/metabolism , Microscopy, Confocal , Molecular Imaging , Biomarkers , Fluorescent Antibody Technique , Germinal Center/immunology , Germinal Center/metabolism , Germinal Center/virology , HIV Infections/diagnosis , HIV Infections/immunology , Host-Pathogen Interactions , Humans , Image Processing, Computer-Assisted/methods , Lymph Nodes/immunology , Lymph Nodes/virology , Lymphoid Tissue/virology , Microscopy, Confocal/methods , Molecular Imaging/methods
15.
Curr Opin HIV AIDS ; 16(4): 232-239, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34039844

ABSTRACT

PURPOSE OF REVIEW: The persistence of HIV-1-infected cells, despite the introduction of the combinatorial antiretroviral therapy, is a major obstacle to HIV-1 eradication. Understanding the nature of HIV reservoir will lead to novel therapeutic approaches for the functional cure or eradication of the virus. In this review, we will update the recent development in imaging applications toward HIV-1/simian immunodeficiency virus (SIV) viral reservoirs research and highlight some of their limitations. RECENT FINDINGS: CD4 T cells are the primary target of HIV-1/SIV and the predominant site for productive and latent reservoirs. This viral reservoir preferentially resides in lymphoid compartments that are difficult to access, which renders sampling and measurements problematical and a hurdle for understanding HIV-1 pathogenicity. Novel noninvasive technologies are needed to circumvent this and urgently help to find a cure for HIV-1. Recent technological advancements have had a significant impact on the development of imaging methodologies allowing the visualization of relevant biomarkers with high resolution and analytical capacity. Such methodologies have provided insights into our understanding of cellular and molecular interactions in health and disease. SUMMARY: Imaging of the HIV-1 reservoir can provide significant insights for the nature (cell types), spatial distribution, and the role of the tissue microenvironment for its in vivo dynamics and potentially lead to novel targets for the virus elimination.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD4-Positive T-Lymphocytes , HIV Infections/drug therapy , HIV-1/genetics , Humans , Macaca mulatta , Viral Load , Virus Latency , Virus Replication
16.
Commun Biol ; 4(1): 563, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980982

ABSTRACT

Innate Lymphoid Cells (ILCs) are immune cells typically found on mucosal surfaces and in secondary lymphoid organs where they regulate the immune response to pathogens. Despite their key role in the immune response, there are still fundamental gaps in our understanding of ILCs. Here we report a human ILC population present in the follicles of tonsils and lymph nodes termed follicular regulatory ILCs (ILCFR) that to our knowledge has not been previously identified. ILCFR have a distinct phenotype and transcriptional program when compared to other defined ILCs. Surprisingly, ILCFR inhibit the ability of follicular helper T (Tfh) cells to provide B cell help. The localization of ILCFR to the germinal centers suggests these cells may interfere with germinal center B cell (GC-B) and germinal center Tfh cell (GC-Tfh) interactions through the production of transforming growth factor beta (TGF-ß. Intriguingly, under conditions of impaired GC-Tfh-GC-B cell interactions, such as human immunodeficiency virus (HIV) infection, the frequency of these cells is increased. Overall, we predict a role for ILCFR in regulating GC-Tfh-GC-B cell interactions and propose they expand in chronic inflammatory conditions.


Subject(s)
Germinal Center/immunology , Germinal Center/physiology , Lymphocytes/immunology , Adolescent , Adult , B-Lymphocytes/immunology , Child , Child, Preschool , Female , Humans , Immunity, Innate/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation/immunology , Lymphocytes/metabolism , Male , Palatine Tonsil/immunology , Palatine Tonsil/metabolism , T Follicular Helper Cells/immunology
17.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903232

ABSTRACT

The development of follicular helper CD4 T (TFH) cells is a dynamic process resulting in a heterogenous pool of TFH subsets. However, the cellular and molecular determinants of this heterogeneity and the possible mechanistic links between them is not clear. We found that human TFH differentiation is associated with significant changes in phenotypic, chemokine, functional, metabolic and transcriptional profile. Furthermore, this differentiation was associated with distinct positioning to follicular proliferating B cells. Single-cell T cell receptor (TCR) clonotype analysis indicated the transitioning toward PD-1hiCD57hi phenotype. Furthermore, the differentiation of TFH cells was associated with significant reduction in TCR level and drastic changes in immunological synapse formation. TFH synapse lacks a tight cSMAC (central supra molecular activation Cluster) but displays the TCR in peripheral microclusters, which are potentially advantageous in the ability of germinal center (GC) B cells to receive necessary help. Our data reveal significant aspects of human TFH heterogeneity and suggest that the PD-1hiCD57hi TFH cells, in particular, are endowed with distinctive programming and spatial positioning for optimal GC B cell help.


Subject(s)
Cell Differentiation/genetics , Cell Lineage/immunology , Receptors, Antigen, T-Cell/genetics , T Follicular Helper Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD57 Antigens/genetics , Cell Communication/immunology , Cell Differentiation/immunology , Cell Lineage/genetics , Chemokines/genetics , Germinal Center/immunology , Germinal Center/metabolism , Humans , Immunological Synapses/genetics , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Phenotype , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/immunology , T Follicular Helper Cells/metabolism , T-Lymphocyte Subsets/immunology
18.
Sci Transl Med ; 13(576)2021 01 13.
Article in English | MEDLINE | ID: mdl-33441427

ABSTRACT

Leukocyte trafficking enables detection of pathogens, immune responses, and immune memory. Dysregulation of leukocyte trafficking is often found in disease, highlighting its important role in homeostasis and the immune response. Whereas some of the molecular mechanisms mediating leukocyte trafficking are understood, little is known about the regulation of trafficking, including trafficking kinetics and its impact on immune homeostasis. We developed a method of serial intravascular staining (SIVS) to measure trafficking kinetics in nonhuman primates using infusions of fluorescently labeled antibodies to label circulating leukocytes. Because antibody infusions labeled only leukocytes in the blood, cells were "barcoded" according to their location at the time of each infusion, providing positional histories that could be used to infer trafficking kinetics. We used SIVS and multiparameter flow cytometry to quantitate cellular trafficking into lymphoid tissues of healthy animals at homeostasis and to identify perivascular cells that could be unique to nonlymphoid organs. To investigate how these parameters could be influenced during disease, SIVS was used to quantify lymphocyte trafficking in macaques infected with the bacterial pathogen Mycobacterium tuberculosis and to enumerate intravascular leukocytes in lung granulomas. We showed that whereas most cells in lung granulomas were localized there for more than 24 hours, granulomas were dynamic with a slow continual cellular influx, the rate of which predicted clearance of M. tuberculosis from the granulomas. SIVS, in combination with intracellular staining and multiparametric flow cytometry, is a powerful method to quantify the kinetics of leukocyte trafficking in nonhuman primates in vivo.


Subject(s)
Mycobacterium tuberculosis , Animals , Kinetics , Leukocytes , Lymphoid Tissue , Staining and Labeling
20.
NPJ Vaccines ; 6(1): 15, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33495459

ABSTRACT

The RV144 HIV-1 vaccine trial has been the only clinical trial to date that has shown any degree of efficacy and associated with the presence of vaccine-elicited HIV-1 envelope-specific binding antibody and CD4+ T-cell responses. This trial also showed that a vector-prime protein boost combined vaccine strategy was better than when used alone. Here we have studied three different priming vectors-plasmid DNA, recombinant MVA, and recombinant VSV, all encoding clade C transmitted/founder Env 1086 C gp140, for priming three groups of six non-human primates each, followed by a protein boost with adjuvanted 1086 C gp120 protein. Our data showed that MVA-priming favors the development of higher antibody binding titers and neutralizing activity compared with other vectors. Analyses of the draining lymph nodes revealed that MVA-prime induced increased germinal center reactivity characterized by higher frequencies of germinal center (PNAhi) B cells, higher frequencies of antigen-specific B-cell responses as well as an increased frequency of the highly differentiated (ICOShiCD150lo) Tfh-cell subset.

SELECTION OF CITATIONS
SEARCH DETAIL
...